Octal D-type transparant latch; 3-state Rev. 6 — 25 November 2010

Product data sheet

General description 1.

The 74AHC573; 74AHCT573 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard No. 7A.

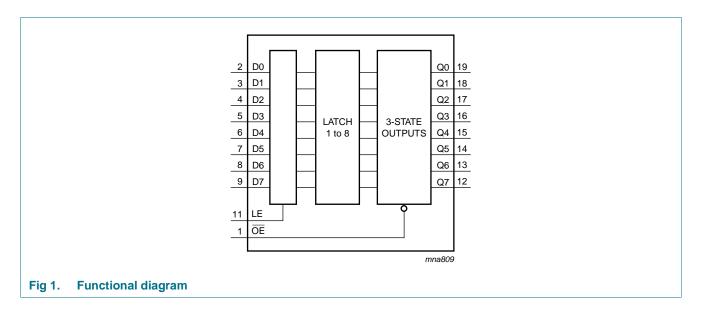
The 74AHC573; 74AHCT573 consists of eight D-type transparent latches featuring separate D-type inputs for each latch and 3-state true outputs for bus oriented applications. A latch enable input (LE) and an output enable input (OE) are common to all latches.

When pin LE is HIGH, data at the Dn inputs enters the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its corresponding Dn input changes. When pin LE is LOW, the latches store the information that is present at the Dn inputs, after a set-up time preceding the HIGH-to-LOW transition of LE.

When pin OE is LOW, the contents of the 8 latches are available at the outputs. When pin OE is HIGH, the outputs go to the high-impedance OFF-state. Operation of the OE input does not affect the state of the latches.

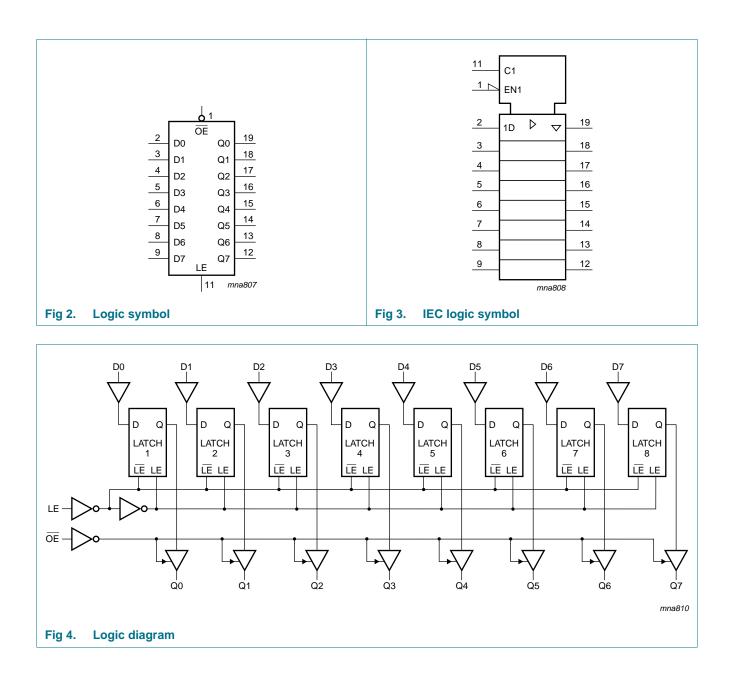
The 74AHC573; 74AHCT573 is functionally identical to the 74AHC373; 74AHCT373, but has a different pin arrangement.

2. **Features and benefits**


- Balanced propagation delays
- All inputs have a Schmitt trigger action
- Common 3-state output enable input
- Functionally identical to the 74AHC373; 74AHCT373
- Inputs accept voltages higher than V_{CC}
- Input levels:
 - For 74AHC573: CMOS input level
 - For 74AHCT573: TTL input level
- ESD protection:
 - HBM EIA/JESD22-A114E exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V
 - CDM EIA/JESD22-C101C exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74AHC573				
74AHC573D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-7
74AHC573PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-7
74AHC573BQ	–40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced very thin quad flat package no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm	SOT764-
74AHCT573				
74AHCT573D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-7
74AHCT573PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-7
74AHCT573BQ	–40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced very thin quad flat package no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm	SOT764-


4. Functional diagram

NXP Semiconductors

74AHC573; 74AHCT573

Octal D-type transparant latch; 3-state

5. Pinning information

74AHC573 74AHCT573 V CC terminal 1 В index area ୍ଷ -2) (19 Q0 D0 D1 (18 Q1 3) OE 1 20 V_{CC} (17 D2 4) Q2 19 Q0 D0 2 (16 Q3 D3 5) 18 Q1 D1 3 6) (15 Q4 17 Q2 D4 D2 4 D3 5 16 Q3 7) (14 D5 Q5 573 15 Q4 D4 6 D6 8) GND⁽¹⁾ (13 Q6 D5 7 14 Q5 D7 9) (12 Q7 D6 8 13 Q6 Ê É 12 Q7 D7 9 GND Ш 001aal532 GND 10 11 LE Transparent top view 001aad099 (1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to GND. Fig 5. Pin configuration SO20 and TSSOP20 Fig 6. **Pin configuration DHVQFN20**

5.1 Pinning

5.2 Pin description

Symbol Pin Description OE 1 output enable input (active LOW) D0 to D7 2, 3, 4, 5, 6, 7, 8, 9 data input GND 10 ground (0 V) LE 11 latch enable (active HIGH) Q0 to Q7 19, 18, 17, 16, 15, 14, 13, 12 data output V _{CC} 20 supply voltage	Table 2.	Pin description	
D0 to D7 2, 3, 4, 5, 6, 7, 8, 9 data input GND 10 ground (0 V) LE 11 latch enable (active HIGH) Q0 to Q7 19, 18, 17, 16, 15, 14, 13, 12 data output	Symbol	Pin	Description
GND 10 ground (0 V) LE 11 latch enable (active HIGH) Q0 to Q7 19, 18, 17, 16, 15, 14, 13, 12 data output	OE	1	output enable input (active LOW)
LE 11 latch enable (active HIGH) Q0 to Q7 19, 18, 17, 16, 15, 14, 13, 12 data output	D0 to D7	2, 3, 4, 5, 6, 7, 8, 9	data input
Q0 to Q7 19, 18, 17, 16, 15, 14, 13, 12 data output	GND	10	ground (0 V)
	LE	11	latch enable (active HIGH)
V _{CC} 20 supply voltage	Q0 to Q7	19, 18, 17, 16, 15, 14, 13, 1	2 data output
	V _{CC}	20	supply voltage

6. Functional description

Table 3.Function table^[1]

Operating mode	Input			Internal latch	Output
	OE	LE	Dn		Qn
Enable and read register (transparent	L	Н	L	L	L
mode)			Н	Н	Н
Latch and read register	L	L	I	L	L
			h	Н	Н
Latch register and disable outputs	Н	L	I	L	Z
			h	Н	Z

[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition;

Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	V _I < -0.5 V	<u>[1]</u> –20	-	mA
Ι _{ΟΚ}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> –20	+20	mA
lo	output current	$V_{O} = -0.5$ V to (V _{CC} + 0.5 V)	-25	+25	mA
I _{CC}	supply current		-	+75	mA
I _{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C$	[2] _	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Octal D-type transparant latch; 3-state

8. Recommended operating conditions

Table 5.	Operating conditions					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
74AHC57	'3					
V _{CC}	supply voltage		2.0	5.0	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 3.0 V to 3.6 V	-	-	100	ns/V
		V_{CC} = 4.5 V to 5.5 V	-	-	20	ns/V
74AHCT5	573					
V _{CC}	supply voltage		4.5	5.0	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 4.5 V to 5.5 V	-	-	20	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		−40 °C	to +85 °C	- 40 °	°C to +	125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Тур	Max	1
74AHC5	73										
VIH	HIGH-level	V _{CC} = 2.0 V	1.5	-	-	1.5	-	1.5	-	-	V
	input voltage	V _{CC} = 3.0 V	2.1	-	-	2.1	-	2.1	-	-	V
		V _{CC} = 5.5 V	3.85	-	-	3.85	-	3.85	-	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	-	0.5	-	0.5	-	-	0.5	V
	input voltage	V _{CC} = 3.0 V	-	-	0.9	-	0.9	-	-	0.9	V
		V _{CC} = 5.5 V	-	-	1.65	-	1.65	-	-	1.65	V
V _{он}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$									
	output voltage	I_{O} = –50 $\mu\text{A};$ V_{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	-	V
		I_{O} = –50 $\mu\text{A};$ V_{CC} = 3.0 V	2.9	3.0	-	2.9	-	2.9	-	-	V
		I_{O} = –50 $\mu\text{A};V_{CC}$ = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	-	V
		$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.80	-	3.70	-	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$									
	output voltage	$I_0 = 50 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	-	0.1	V
		$I_0 = 50 \ \mu A; \ V_{CC} = 3.0 \ V$	-	0	0.1	-	0.1	-	-	0.1	V
		$I_{O} = 50 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	-	0.1	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	-	0.44	-	-	0.55	V
		I_{O} = 8.0 mA; V_{CC} = 4.5 V	-	-	0.36	-	0.44	-	-	0.55	V

74AHC_AHCT573

6 of 19

Octal D-type transparant latch; 3-state

Symbol	Parameter	Conditions		25 °C		_40 °C f	to +85 °C	_40 (°C to +	125 °C	Unit
Gymbol	i arameter	Conditions	Min	Тур	Max	Min	Max	Min	Тур	Max	onne
I _{OZ}	OFF-state output current	$ \begin{array}{ll} \forall V_{I} = V_{IH} \text{ or } V_{IL}; \\ \text{rrent} & V_{O} = V_{CC} \text{ or } \text{GND}; \\ & V_{CC} = 5.5 \text{ V} \end{array} $		-	±0.25	-	±2.5	-	-	±10.0	μA
lı	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 0 V$ to 5.5 V	-	-	0.1	-	1.0	-	-	2.0	μΑ
I _{CC}	supply current		-	-	4.0	-	40	-	-	80	μΑ
Cı	input capacitance	$V_I = V_{CC}$ or GND	-	3	10	-	10	-	-	10	pF
Co	output capacitance		-	4	-	-	-	-	-	10	pF
74AHCT	573										
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	2.0	-	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	-	0.8	-	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$									
	output voltage	I _O = -50 μA	4.4	4.5	-	4.4	-	4.4	-	-	V
		I _O = -8.0 mA	3.94	-	-	3.80	-	3.70	-	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$									
	output voltage	I _O = 50 μA	-	0	0.1	-	0.1	-	-	0.1	V
		l _O = 8.0 mA	-	-	0.36	-	0.44	-	-	0.55	V
I _{OZ}	OFF-state output current		-	-	±0.25	-	±2.5	-	-	±10.0	μA
lı	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	-	0.1	-	1.0	-	-	2.0	μΑ
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	4.0	-	40	-	-	80	μΑ
∆I _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}; I_O = 0 \text{ A};$ other pins at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V	-	-	1.35	-	1.5	-	-	1.5	mA
CI	input capacitance	$V_I = V_{CC}$ or GND	-	3	10	-	10	-	-	10	pF
Co	output capacitance		-	4	-	-	-	-	-	10	pF

Table 6. Static characteristics ... continued

Octal D-type transparant latch; 3-state

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 11</u>.

Min TypU Max Min Max Min Max Min Max tpd propagation delay Dn to On; see Figure 7 [2] [2] $V_{CC} = 3.0 \ V to 3.6 \ V$ [2] $V_{CC} = 3.0 \ V to 3.6 \ V$ [3] 1.0 13.0 1.0 14.0 $C_L = 50 \ PF$ - 5.5 11.0 1.0 13.0 1.0 14.0 $C_L = 50 \ PF$ - 7.8 14.5 1.0 16.5 1.0 18.5 $V_{CC} = 3.0 \ V to 3.6 \ V$ - - 5.5 8.8 1.0 10.0 15.0 $L_L = 50 \ PF$ - 5.5 8.8 1.0 14.0 1.0 15.0 $C_L = 15 \ PF$ - 5.8 11.9 1.0 14.0 10.0 15.0 $V_{CC} = 3.0 \ V to 3.6 \ V$ - - 5.8 11.9 1.0 10.0 10.0 $C_L = 50 \ PF$ - 6.8.3 15.0 1.0 11.0 1.0 10.0 12.5	Symbol	Parameter	Conditions			25 °C		−40 °C	to +85 °C	−40 °C	to +125 °C	Unit
					Min	Typ <mark>[1]</mark>	Max	Min	Max	Min	Max	
$ \begin{array}{c c c c c c c } \mbox{delay} & V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline C_L = 15 \ {\rm pF} & - 5.5 & 11.0 & 1.0 & 13.0 & 1.0 & 14.0 \\ \hline C_L = 50 \ {\rm pF} & - 7.8 & 14.5 & 1.0 & 16.5 & 1.0 & 18.5 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ {\rm pF} & - 3.9 & 6.8 & 1.0 & 8.0 & 1.0 & 8.5 \\ \hline C_L = 50 \ {\rm pF} & - 5.5 & 8.8 & 1.0 & 10.0 & 1.0 & 11.0 \\ \hline LE \ to \ \Omega; \ {\rm see} \ Figure \ 8 & I2 \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline C_L = 15 \ {\rm pF} & - 5.8 & 11.9 & 1.0 & 14.0 & 1.0 & 15.0 \\ \hline C_L = 50 \ {\rm pF} & - 5.8 & 11.9 & 1.0 & 14.0 & 1.0 & 15.0 \\ \hline C_L = 50 \ {\rm pF} & - 5.8 & 11.9 & 1.0 & 14.0 & 1.0 & 15.0 \\ \hline C_L = 50 \ {\rm pF} & - 5.8 & 11.9 & 1.0 & 14.0 & 1.0 & 10.0 \\ \hline C_L = 50 \ {\rm pF} & - 5.9 & 9.7 & 1.0 & 9.0 & 1.0 & 10.0 \\ \hline C_L = 50 \ {\rm pF} & - 5.9 & 9.7 & 1.0 & 11.0 & 1.0 & 10.2 \\ \hline C_L = 15 \ {\rm pF} & - 5.8 & 11.5 & 1.0 & 13.5 & 1.0 & 14.5 \\ \hline C_L = 15 \ {\rm pF} & - 5.8 & 11.5 & 1.0 & 13.5 & 1.0 & 14.5 \\ \hline C_L = 15 \ {\rm pF} & - 5.8 & 11.5 & 1.0 & 13.5 & 1.0 & 14.5 \\ \hline C_L = 50 \ {\rm pF} & - 6.8 & 15.0 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline C_L = 50 \ {\rm pF} & - 6.8 & 15.0 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline C_L = 50 \ {\rm pF} & - 6.8 & 11.0 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ {\rm pF} & - 6.8 & 11.0 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ {\rm pF} & - 6.8 & 11.0 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ {\rm pF} & - 6.8 & 11.0 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ {\rm pF} & - 6.8 & 11.0 & 1.0 & 16.5 & 1.0 & 18.5 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ {\rm pF} & - 6.8 & 11.0 & 1.0 & 10.0 & 1.0 & 10.0 \\ \hline C_L = 50 \ {\rm pF} & - 7.4 & 9.7 & 1.0 & 11.0 & 1.0 & 10.0 \\ \hline C_L = 50 \ {\rm pF} & - 7.4 & 9.7 & 1.0 & 11.0 & 1.0 & 10.0 \\ \hline C_L = 50 \ {\rm pF} & - 7.4 & 9.7 & 1.0 & 11.0 & 1.0 & 10.0 \\ \hline C_L = 50 \ {\rm pF} & - 7.4 & 9.7 & 1.0 & 11.0 & 1.0 & 1.0 & 12.5 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V & 5.0 & - 5.0 & - 5.0 & 5.0 & - 5.0 & - 5.0 & - 5.0 & - 5.0 & - 5.0 & - 5.0$	74AHC5	73										
$ t_{eff} = \frac{C_{L} = 15 \text{ pF}}{C_{L} = 15 \text{ pF}} = \frac{5.5}{7.8} \frac{11.0}{1.0} \frac{1.0}{1.6.5} \frac{11.0}{1.0} \frac{14.0}{1.6.5} \frac{11.0}{1.0} \frac{14.0}{1.6.5} \frac{11.0}{1.0} \frac{14.0}{1.6.5} \frac{11.0}{1.0} \frac{14.0}{1.0} \frac{11.0}{1.0} \frac{11.0}{1$	pd		Dn to Qn; see Figure 7	[2]								
$ {\rm Len} \ \ {\rm $		delay	V_{CC} = 3.0 V to 3.6 V									
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			C _L = 15 pF		-	5.5	11.0	1.0	13.0	1.0	14.0	ns
$ t_{su} \ \ \ \ \ \ \ \ \ \ \ \ \ $			$C_L = 50 \text{ pF}$		-	7.8	14.5	1.0	16.5	1.0	18.5	ns
$ \begin{tabular}{ c c c c c c c } \hline C_L = 50 \mbox{ pF} & - & 5.5 & 8.8 & 1.0 & 10.0 & 1.0 & 11.0 \\ \begin{tabular}{ c c c c c c c c } \hline C_L = 50 \mbox{ pF} & - & 5.8 & 11.9 & 1.0 & 14.0 & 1.0 & 15.0 \\ \hline C_L = 50 \mbox{ pF} & - & 8.3 & 15.4 & 1.0 & 17.5 & 1.0 & 19.5 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ pF & - & 4.2 & 7.7 & 1.0 & 9.0 & 1.0 & 10.0 \\ \hline C_L = 50 \ pF & - & 5.9 & 9.7 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline C_L = 15 \ pF & - & 5.8 & 11.5 & 1.0 & 13.5 & 1.0 & 14.5 \\ \hline C_L = 15 \ pF & - & 5.8 & 11.5 & 1.0 & 13.5 & 1.0 & 14.5 \\ \hline C_L = 50 \ pF & - & 5.8 & 11.5 & 1.0 & 13.5 & 1.0 & 14.5 \\ \hline C_L = 50 \ pF & - & 8.3 & 15.0 & 1.0 & 17.0 & 10.0 & 19.0 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ pF & - & 4.4 & 7.7 & 1.0 & 9.0 & 1.0 & 10.0 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ pF & - & 6.3 & 9.7 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline \ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline \ C_L = 15 \ pF & - & 6.8 & 11.0 & 1.0 & 13.0 & 1.0 & 10.0 \\ \hline \ C_L = 50 \ pF & - & 9.7 & 14.5 & 1.0 & 13.0 & 1.0 & 14.0 \\ \hline \ C_L = 50 \ pF & - & 9.7 & 14.5 & 1.0 & 13.0 & 1.0 & 14.0 \\ \hline \ C_L = 50 \ pF & - & 9.7 & 14.5 & 1.0 & 16.5 & 1.0 & 18.5 \\ \hline \ V_{CC} = 3.0 \ V \ to \ 5.5 \ V \\ \hline \ C_L = 15 \ pF & - & 4.6 & 7.7 & 1.0 & 9.0 & 1.0 & 11.0 & 10.0 \\ \hline \ C_L = 50 \ pF & - & 7.4 & 9.7 & 1.0 & 11.0 & 11.0 & 10.0 \\ \hline \ C_L = 50 \ pF & - & 7.4 & 9.7 & 1.0 & 11.0 & 11.0 & 10.0 \\ \hline \ C_L = 50 \ pF & - & 7.4 & 9.7 & 1.0 & 11.0 & 11.0 & 10.0 \\ \hline \ C_L = 50 \ pF & - & 7.4 & 9.7 & 1.0 & 11.0 & 11.0 & 10.0 \\ \hline \ C_L = 50 \ pF & - & 7.4 & 9.7 & 1.0 & 11.0 & 11.0 & 10.0 \\ \hline \ C_L = 50 \ pF & - & 7.4 & 9.7 & 1.0 & 11.0 & 11.0 & 10.0 \\ \hline \ C_L = 50 \ pF & - & 7.4 & 9.7 & 1.0 & 11.0 & 11.0 & 10.0 \\ \hline \ C_L = 50 \ pF & - & 7.4 & 9.7 & 1.0 & 11.0 & 11.0 & 10.0 \\ \hline \ C_L = 50 \ pF & - & 7.4 & 9.7 & 1.0 & 11.0 & 11.0 & 10.0 \\ \hline \ \ C_L = 50 \ pF & - & 7.4 & 9.7 & 1.0 & 11.0 & 11.0 & 10.0 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			V_{CC} = 4.5 V to 5.5 V									
$ \begin{tabular}{ c c c c } $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$			C _L = 15 pF		-	3.9	6.8	1.0	8.0	1.0	8.5	ns
$ \begin{tabular}{ c c c c c } \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline C_L = 15 \ pF & - & 5.8 & 11.9 & 1.0 & 14.0 & 1.0 & 15.0 \\ \hline C_L = 50 \ pF & - & 8.3 & 15.4 & 1.0 & 17.5 & 1.0 & 19.5 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ pF & - & 4.2 & 7.7 & 1.0 & 9.0 & 1.0 & 10.0 \\ \hline C_L = 50 \ pF & - & 5.9 & 9.7 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			$C_L = 50 \text{ pF}$		-	5.5	8.8	1.0	10.0	1.0	11.0	ns
$ { \ \ \ \ \ \ \ \ \ \ \ \ $			LE to Qn; see Figure 8	[2]								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V_{CC} = 3.0 V to 3.6 V									
$ \begin{array}{ c c c c c } \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ pF & - & 4.2 & 7.7 & 1.0 & 9.0 & 1.0 & 10.0 \\ \hline C_L = 50 \ pF & - & 5.9 & 9.7 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline OE \ to \ On; \ see \ Figure \ 9 & [3] \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline C_L = 15 \ pF & - & 5.8 & 11.5 & 1.0 & 13.5 & 1.0 & 14.5 \\ \hline C_L = 50 \ pF & - & 8.3 & 15.0 & 1.0 & 17.0 & 1.0 & 19.0 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ pF & - & 4.4 & 7.7 & 1.0 & 9.0 & 1.0 & 10.0 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 50 \ pF & - & 6.3 & 9.7 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline C_L = 50 \ pF & - & 6.8 & 11.0 & 1.0 & 11.0 & 10.0 \\ \hline C_L = 50 \ pF & - & 6.8 & 11.0 & 1.0 & 11.0 & 10.0 \\ \hline C_L = 50 \ pF & - & 6.8 & 11.0 & 1.0 & 13.0 & 1.0 & 14.0 \\ \hline C_L = 50 \ pF & - & 9.7 & 14.5 & 1.0 & 16.5 & 1.0 & 18.5 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ pF & - & 4.6 & 7.7 & 1.0 & 9.0 & 1.0 & 10.0 \\ \hline C_L = 50 \ pF & - & 7.4 & 9.7 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline V_{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \hline C_L = 15 \ pF & - & 7.4 \ 9.7 & 1.0 & 11.0 & 1.0 & 12.5 \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & 5.0 & - & 5.0 & - & 5.0 & - \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & 5.0 & - & 5.0 & - & 5.0 & - \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & 5.0 & - & 5.0 & - & 5.0 & - \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & 5.0 & - & 5.0 & - & 5.0 & - \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & 5.0 & - & 5.0 & - & 5.0 & - \\ \hline V_{CC} = 3.0 \ V \ to \ 5.0 \ V & 5.0 \ V & - & 5.0 \ V & 5.0 \ V & - & 5.0 \ V_{CC} = 15 \ $			C _L = 15 pF		-	5.8	11.9	1.0	14.0	1.0	15.0	ns
$ \frac{C_{L} = 15 \text{ pF}}{C_{L} = 50 \text{ pF}} = -4.2 7.7 1.0 9.0 1.0 10.0 0.0 0.0 1.0 11.0 1.0 12.5 0.0 $			C _L = 50 pF		-	8.3	15.4	1.0	17.5	1.0	19.5	ns
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			V_{CC} = 4.5 V to 5.5 V									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			C _L = 15 pF		-	4.2	7.7	1.0	9.0	1.0	10.0	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			C _L = 50 pF		-	5.9	9.7	1.0	11.0	1.0	12.5	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	en	enable time	OE to Qn; see Figure 9	[3]								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V_{CC} = 3.0 V to 3.6 V									
$ \frac{V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} }{C_L = 15 \text{ pF} } - 4.4 7.7 1.0 9.0 1.0 10.0 \\ C_L = 50 \text{ pF} - 6.3 9.7 1.0 11.0 1.0 12.5 \\ \hline C_L = 50 \text{ pF} - 6.3 9.7 1.0 11.0 1.0 12.5 \\ \hline C_L = 50 \text{ pF} - 6.8 11.0 1.0 13.0 1.0 14.0 \\ \hline C_L = 50 \text{ pF} - 8.8 11.0 1.0 16.5 1.0 18.5 \\ \hline V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline C_L = 15 \text{ pF} - 8.8 11.0 1.0 16.5 1.0 18.5 \\ \hline V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline C_L = 15 \text{ pF} - 7.4 9.7 1.0 9.0 1.0 10.0 \\ \hline C_L = 50 \text{ pF} - 7.4 9.7 1.0 11.0 1.0 12.5 \\ \hline V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline C_L = 15 \text{ pF} - 7.4 9.7 1.0 1.0 11.0 1.0 12.5 \\ \hline V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline C_L = 50 \text{ pF} - 7.4 9.7 1.0 1.0 11.0 1.0 12.5 \\ \hline V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline T_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline T_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline T_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline T_{CC} = 3.0 \text{ V to } 3.6 \text{ V} 5.0 - 7.5 5.0 - 5.0 \\ \hline T_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline T_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline T_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline T_{CC} = 3.0 \text{ V to } 3.6 \text{ V} 5.0 - 7 \text{ 5.0 } - 5.0 \\ \hline T_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \\ \hline T_{CC} = 3.0 \text{ V to } 3.6 V$			C _L = 15 pF		-	5.8	11.5	1.0	13.5	1.0	14.5	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			C _L = 50 pF		-	8.3	15.0	1.0	17.0	1.0	19.0	ns
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			V_{CC} = 4.5 V to 5.5 V									
$ \begin{array}{c} \mbox{disable time} \\ disable $			C _L = 15 pF		-	4.4	7.7	1.0	9.0	1.0	10.0	ns
$\begin{array}{c} \text{Normalization} \\ Norm$			C _L = 50 pF		-	6.3	9.7	1.0	11.0	1.0	12.5	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	dis	disable time	OE to Qn; see Figure 9	<u>[4]</u>								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V_{CC} = 3.0 V to 3.6 V									
$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ $C_{L} = 15 \text{ pF} - 4.6 7.7 1.0 9.0 1.0 10.0$ $C_{L} = 50 \text{ pF} - 7.4 9.7 1.0 11.0 1.0 12.5$ $LE \text{ HIGH; see Figure 8}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} 5.0 - 5.0 - 5.0 - 5.0 - 100 -$			C _L = 15 pF		-	6.8	11.0	1.0	13.0	1.0	14.0	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			C _L = 50 pF		-	9.7	14.5	1.0	16.5	1.0	18.5	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V_{CC} = 4.5 V to 5.5 V									
$\frac{\text{LE HIGH; see Figure 8}}{V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}} \qquad 5.0 - $			C _L = 15 pF		-	4.6	7.7	1.0	9.0	1.0	10.0	ns
$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad 5.0 \qquad - \qquad$			C _L = 50 pF		-	7.4	9.7	1.0	11.0	1.0	12.5	ns
$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V} \qquad 5.0 - 5.0 - 5.0 -$ su set-up time Dn to LE; see Figure 10 $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad 3.5 - 3.5 - 3.5 -$	W	pulse width	LE HIGH; see Figure 8									
set-up time Dn to LE; see Figure 10 $V_{CC} = 3.0 V$ to $3.6 V$ $3.5 - 3.5 - 3.5 - 3.5$			V_{CC} = 3.0 V to 3.6 V		5.0	-	-	5.0	-	5.0	-	ns
$V_{\rm CC} = 3.0 \ V \ {\rm to} \ 3.6 \ V$ 3.5 3.5 - 3.5 -			V_{CC} = 4.5 V to 5.5 V		5.0	-	-	5.0	-	5.0	-	ns
$V_{CC} = 3.0 V \text{ to } 3.6 V$ 3.5 3.5 - 3.5 -	su	set-up time	Dn to LE; see Figure 10									
$V_{CC} = 4.5 V \text{ to } 5.5 V$ 3.5 3.5 - 3.5 -			$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		3.5	-	-	3.5	-	3.5	-	ns
						-	-		-		-	ns

8 of 19

Octal D-type transparant latch; 3-state

Symbol	Parameter	Conditions			25 °C		−40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
				Min	Typ[1]	Мах	Min	Max	Min	Max	
t _h	hold time	Dn to LE; see Figure 10									
		V_{CC} = 3.0 V to 3.6 V		1.5	-	-	1.5	-	1.5	-	ns
		V_{CC} = 4.5 V to 5.5 V		1.5	-	-	1.5	-	1.5	-	ns
C _{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz};$ V ₁ = GND to V _{CC}	<u>[5]</u>	-	12	-	-	-	-	-	pF
74AHCT	573; V _{CC} = 4.	5 V to 5.5 V									
t _{pd}	propagation	Dn to Qn; see Figure 7	[2]								
	delay	C _L = 15 pF		-	3.5	5.5	1	6.5	1	7.0	ns
		C _L = 50 pF		-	4.9	7.5	1	8.5	1	9.5	ns
		LE to Qn; see Figure 8	[2]								
		C _L = 15 pF		-	3.9	6.0	1	7.0	1	7.5	ns
		C _L = 50 pF		-	5.5	8.5	1	9.5	1	11.0	ns
t _{en}	enable time	OE to Qn; see Figure 9	[3]								
		C _L = 15 pF		-	4.1	6.5	1	7.5	1	8.5	ns
		C _L = 50 pF		-	5.9	8.5	1	10.0	1	11.0	ns
t _{dis}	disable time	OE to Qn; see Figure 9	[4]								
		C _L = 15 pF		-	4.5	6.5	1	7.5	1	8.5	ns
		C _L = 50 pF		-	6.4	9.0	1	10.0	1	11.5	ns
t _W	pulse width	LE HIGH; see Figure 8		5.0	-	-	5.0	-	5.0	-	ns
t _{su}	set-up time	Dn to LE; see Figure 10		3.5	-	-	3.5	-	3.5	-	ns
t _h	hold time	Dn to LE; see Figure 10		1.5	-	-	1.5	-	1.5	-	ns
C _{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz};$ V _I = GND to V _{CC}	<u>[5]</u>	-	18	-	-	-	-	-	pF

Table 7. Dynamic characteristics ... continued

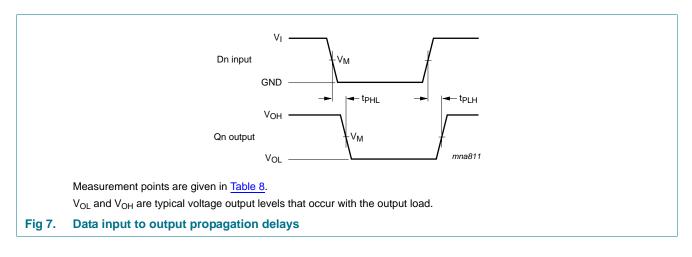
[1] Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V and V_{CC} = 5.0 V).

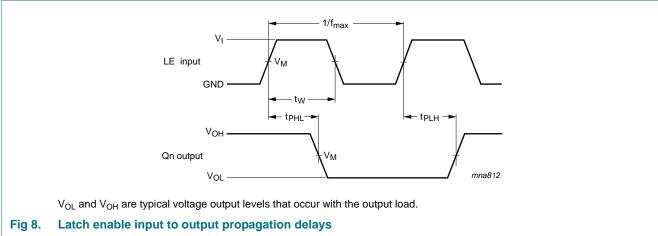
- [2] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [3] t_{en} is the same as t_{PZH} and t_{PZL} .
- [4] t_{dis} is the same as t_{PHZ} and t_{PLZ} .
- [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{P}\mathsf{D}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}{}^2 \times \mathsf{f}_i \times \mathsf{N} + \Sigma(\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}{}^2 \times \mathsf{f}_o) \text{ where:}$

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;

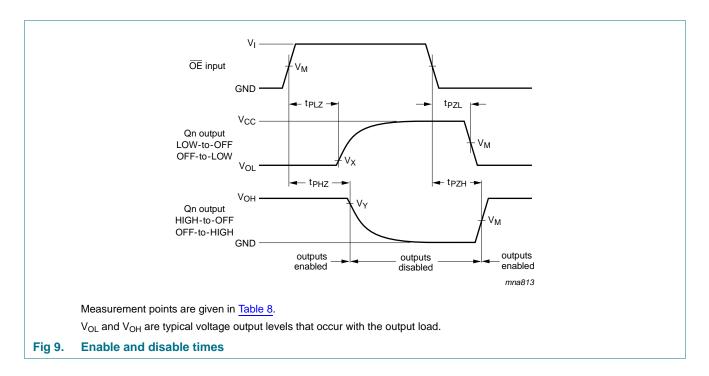

 V_{CC} = supply voltage in V;

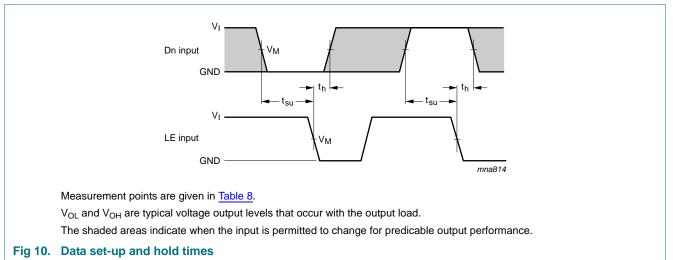

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

Octal D-type transparant latch; 3-state

11. Waveforms

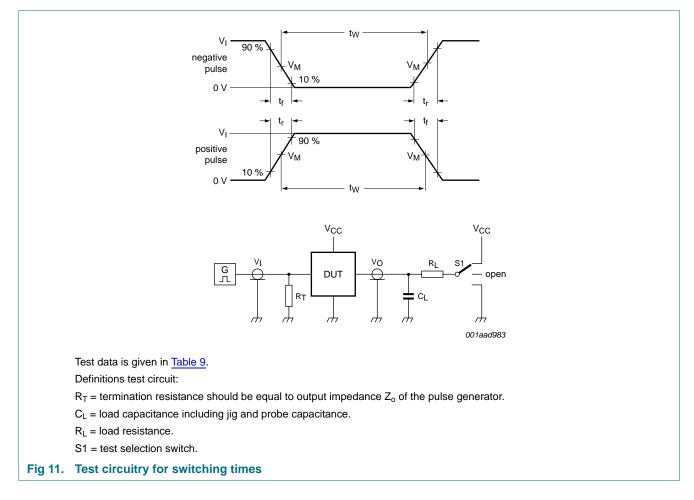




NXP Semiconductors

74AHC573; 74AHCT573

Octal D-type transparant latch; 3-state


Table 8. Measurement points							
Туре	Input	Output					
	V _M	V _M	V _X	V _Y			
74AHC573	$0.5\times V_{CC}$	$0.5\times V_{CC}$	V _{OL} + 0.3 V	$V_{OH} - 0.3 V$			
74AHCT573	1.5 V	$0.5 \times V_{CC}$	V _{OL} + 0.3 V	V _{OH} – 0.3 V			

74AHC_AHCT573
Product data sheet

NXP Semiconductors

74AHC573; 74AHCT573

Octal D-type transparant latch; 3-state

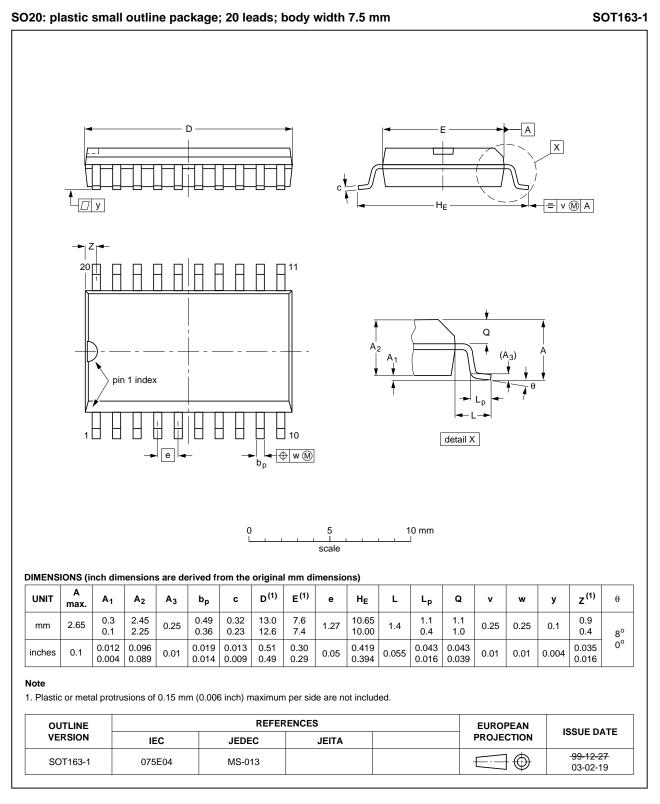


Table 9. Test data

Туре	Input		Load		S1 position		
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74AHC573	V _{CC}	\leq 3.0 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}
74AHCT573	3.0 V	\leq 3.0 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

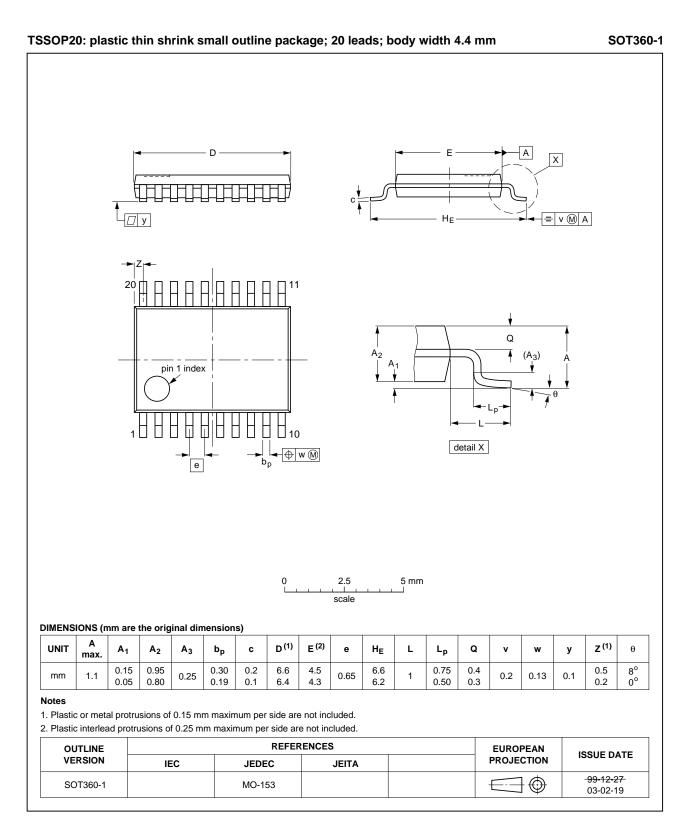

12. Package outline

Fig 12. Package outline SOT163-1 (SO20)

All information provided in this document is subject to legal disclaimers.

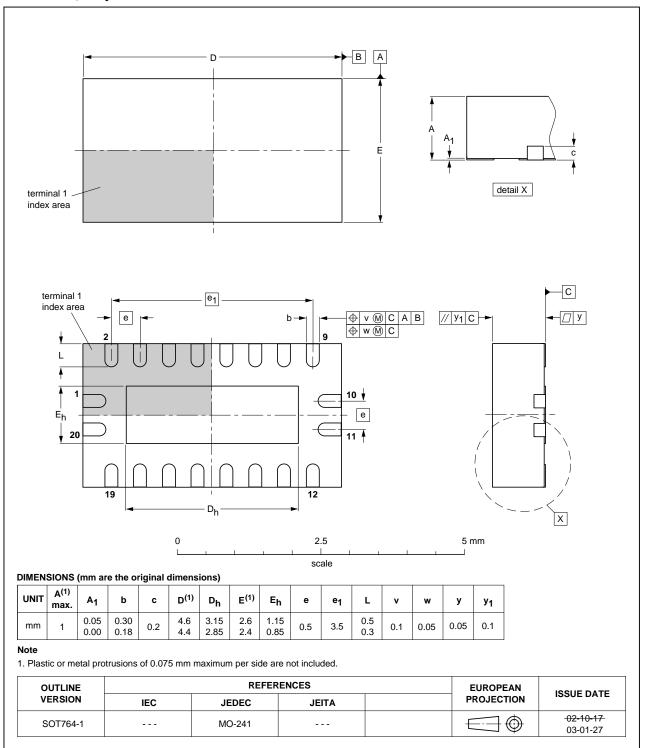

Octal D-type transparant latch; 3-state

Fig 13. Package outline SOT360-1 (TSSOP20)

All information provided in this document is subject to legal disclaimers.

Octal D-type transparant latch; 3-state

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

Fig 14. Package outline SOT764-1 (DHVQFN20)

All information provided in this document is subject to legal disclaimers.

13. Abbreviations

Table 10.	Abbreviations
Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision his	story			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74AHC_AHCT573 v.6	20101125	Product data sheet	-	74AHC_AHCT573 v.5
Modifications:	• Figure note	[1] of Figure 6: added.		
74AHC_AHCT573 v.5	20100325	Product data sheet	-	74AHC_AHCT573 v.4
74AHC_AHCT573 v.4	20100303	Product data sheet	-	74AHC_AHCT573 v.3
74AHC_AHCT573 v.3	20080424	Product data sheet	-	74AHC_AHCT573 v.2
74AHC_AHCT573 v.2	20031208	Product specification	-	74AHC_AHCT573 v.1
74AHC_AHCT573 v.1	19990927	Product specification	-	-

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74AHC_AHCT573
Product data sheet

Octal D-type transparant latch; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Octal D-type transparant latch; 3-state

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning 4
5.2	Pin description 4
6	Functional description 5
7	Limiting values 5
8	Recommended operating conditions 6
9	Static characteristics 6
10	Dynamic characteristics 8
11	Waveforms 10
12	Package outline 13
13	Abbreviations 16
14	Revision history 16
15	Legal information 17
15.1	Data sheet status 17
15.2	Definitions 17
15.3	Disclaimers
15.4	Trademarks
16	Contact information 18
17	Contents 19

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 November 2010 Document identifier: 74AHC_AHCT573